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Abstract  

Automatic bird vocalization analysis is advancing research in ecology and conservation. In recent years, numerous 
studies have employed deep learning models to categorize bird calls. This study examined the efficacy of Haar Wavelet 
Residual Convolutional Neural Network (WRCNN) for multi-label bird species classification. Initially, Haar wavelet 
transforms were applied to the mel spectrograms of bird call recordings. These transformed spectrograms were 
subsequently input into the WRCNN for multi-scale spectral analysis. The model obtained a macro-average F1-score of 
0.60, showcasing its potential in multi-label tasks and exhibiting notable improvements over baseline methods. 
Experiments were conducted utilizing the Xeno-Canto bird sound database. 
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1. Introduction 

Bioacoustics, the study of animal sounds, explores how vocalizations influence ecology and evolution, particularly in 
communication, reproduction, and territorial behavior. Birds play a key role in ecosystem health [1], but face threats 
from human activity, making biodiversity monitoring essential. Research [2] shows that birds can signal environmental 
shifts due to their wide presence. Identifying bird calls is crucial for minimizing human impact on avian populations [3], 
as many species serve as pollinators [4], seed dispersers [5], and predators [6]; fluctuations in their numbers can have 
significant environmental consequences. Bird vocalizations are categorized into two types: calls and songs.  Songs are 
the extended, loud vocal displays produced by male birds, comprising phrases, syllables, and trills. In contrast, calls are 
brief, unmelodious vocalizations used by both sexes for various purposes, including distress, alarm, flight, warning, 
feeding, nesting, and flock communication. 

The classification of bird calls is challenging due to the wide range of acoustic properties and the difficulty humans face 
in distinguishing them. Accurate classification requires an analysis of various acoustic features, such as duration and 
frequency [7]. Recent advancements in deep learning have enabled precise bird call classification models [8]. These 
models, trained on diverse audio datasets, can identify even the rarest behavioral patterns in avian species [9]. 
Convolutional Neural Networks (CNNs) have succeeded in multi-label classification but may overlook key spectral 
details essential for identifying coexisting bird species. To address this, we propose a Haar Wavelet Residual CNN 
(WRCNN) that applies Haar wavelet transforms to mel spectrograms, enhancing multi-scale recognition of time-
frequency patterns. Residual connections retain vital information, strengthening the model’s ability to classify complex 
vocalizations across species.  
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Traditional acoustic feature extraction methods incorporate various techniques that capture both time and frequency 
domain characteristics, including average energy, spectral properties, average zero-crossing rate, bandwidth, mel-
frequency cepstral coefficients, chromagrams, wavelet coefficients, and Linear predictive coding-derived coefficients.  
Literature provides some of the speech and audio processing techniques for bird call recognition [10-12]. A study [13] 
investigated two CNN-based approaches for bird detection on audio signals. The Bulbul model, using diverse field 
recordings, and the Sparrow model, using smartphone recordings from UK locations, each achieved an AUC of 89% on 
hidden test sets. Transfer learning models show promise for efficient bird-call classification with limited data [14, 15]. 
Large-scale bird sound classification has been addressed using various CNNs to extract features from audio recording 
visualizations [16]. However, time-frequency overlap in these recordings presents challenges for multi-label bird 
species classification. Researchers have framed this as a multi-instance multi-label problem [17] and employed multi-
label classifiers to identify concurrent audio patterns in extended recordings [18]. These approaches have shown that 
auditory indices can reliably indicate fundamental ecological processes [18]. 

A study [19] proposed wavelet CNNs and evaluated their practical performance in texture classification and image 
annotation. The experiments revealed that wavelet CNNs can achieve superior accuracy in both tasks compared to 
existing models while having significantly fewer parameters than conventional CNNs. Another study [20] investigated 
the Discrete Wavelet Transform (DWT) in the frequency domain and designed a novel Wavelet-Attention (WA) block to 
implement attention in the high-frequency domain. The work [21] presents a bird call detection method for field 
recordings that adapts easily to new species and maintains effectiveness despite noise or distance. Using wavelet node 
reconstruction as a preprocessing filter, it prioritizes high recall to reduce missed calls, which are harder to recover 
later. In this work, we propose an architecture which combines Haar wavelet transform with residual CNN (WRCNN) 
for multi-scale feature extraction. The system architecture is described in Section 3, followed by the experimental 
framework in Section 4. The analysis of the results is presented in Section 5. The paper concludes in Section 6. 

2. Materials and methods  

We propose Haar Wavelet Residual Convolutional Networks (WRCNN) for detecting multiple overlapping species in 
field recordings. We used Haar wavelet transforms in combination with residual CNN, using mel spectrograms as input 
as shown in Figure 1. 

 

Figure 1 Block diagram of the proposed Haar Wavelet Residual Convolutional Neural Network (WRCNN) 
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2.1. Dataset and preprocessing 

The Xeno-canto bird sound database is utilized for performance evaluation [22]. The dataset used for bird call 
classification has a sampling rate of 16,000 Hz and an audio resolution of 16-bit in mono format. The dataset 
encompasses ten bird species: Asian Koel (AK, 26, 121), Blue Jay (BJ, 27, 109), House Crow (HC,27, 111), Mallard Duck 
(MD, 25, 106), Grey Go-away (GG, 19, 109), Red Lapwing (RL, 24, 104), Eurasian Owl (EO, 25, 107), Indian Peafowl (IP, 
29, 103), House Sparrow (HS, 24, 100), and Western Wood Pewee (WW, 24, 108). The number of Xeno-canto files and 
pre-processed audio files are provided in parentheses. 

The raw dataset includes 250 files sourced from Xeno-Canto, with a training set expanded to 1,078 files and an 
augmented version totaling 2,923 files to enhance model training. For testing, the dataset includes two separate test 
sets: one with 334 files for two bird species and another with 100 files for three bird species. The training set has 1,078 
individual bird calls, while the test sets contain 668 calls for two bird species and 300 calls for three species. Each 
training file has a duration of 1.5 seconds, while each test file is 9 seconds long, providing a comprehensive dataset 
structure for model evaluation. Additional training files are generated using specAugment [23].  

2.2. Feature extraction 

Our methodology applies wavelet transforms to the mel spectrogram, yielding coefficients at various decomposition 
stages, encompassing approximation and detail coefficients in multiple orientations. The mel spectrogram represents 
the temporal progression of frequency components, while the wavelet transform provides a multi-scale analysis, 
elucidating both high and low-frequency information.  

 

Figure 2 Mel spectrogram of test file with 2 species (1-Red Lapwing, 2- Grey Go-away) 

2.2.1.  Mel spectrogram 

A mel spectrogram provides a visual depiction of how a signal's frequencies evolve over time. It employs a specialized 
mel-scale filter bank to emphasize the frequency ranges that are most significant for human auditory perception. The 
mel scale is created to adjust frequency data in a way that more accurately reflects how humans perceive sound. Figure 
2 shows the mel spectrogram of audio recording containing multiple species. Data augmentation is implemented 
utilizing SpecAugment [23], a technique that involves obscuring temporal segments and frequency channels in the mel 
spectrogram representation. We generated 3344 augmented mel spectrograms. Our calculations employed 224 mel 
filter banks, a 2048-point FFT, a 2048-sample Hanning window (approximately 128 ms), and a 512-sample hop length 
(approximately 32 ms).  

2.2.2. Haar Wavelet Transform  

The Discrete Wavelet Transform (DWT) is applied to each color channel (Red, Green, and Blue) of an RGB image 
individually, using the Haar wavelet. This method preserves only the low-frequency components (LL sub-band) for each 
channel, which are then stacked to create a transformed RGB image. 

• For each color channel, a 2D DWT is computed using the Haar wavelet, decomposing the image into four sub-
bands 

o LL (Approximation): Low-pass filter in both dimensions. 
o LH (Horizontal Detail): Low-pass along rows, high-pass along columns. 
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o HL (Vertical Detail): High-pass along rows, low-pass along columns. 
o HH (Diagonal Detail): High-pass along both dimensions. 

• The coefficients for each color channel can be expressed as: 

coeffs2 = DWThaar (image[:, :, i]) 

where i represents the color channel (R, G, or B). 

• The Haar wavelet, known for its simplicity, separates signals into local averages and differences. It is defined 
as: 

ψhaar(t) = {1, for 0 ≤ t < 1/2; 

                      -1, for 1/2 ≤ t < 1; 

                       0, otherwise} 

• This function provides two main filter components: 

o Low-pass filter (approximation): Captures average information. 
o High-pass filter (details): Captures difference information. 

• Each channel i of the image is processed as follows 

LLi, (LHi, HLi, HHi) = DWThaar(image[:, :, i]) 

• We retain only the LL component for each color channel, representing the large-scale structure 
(approximation) of the image. For an RGB image, the calculation proceeds as:  

LLR, LLG, LLB 

• The LL components from the three color channels are then stacked along the last axis to reconstruct an RGB-
like structure suitable for further analysis. This process can be represented by 

transformed_image = np.stack([LLR, LLG, LLB], axis=-1) 

• The final output is a transformed RGB image containing only the low-frequency components of each color 
channel: 

transformed_image(x, y) = [LLR(x, y), LLG(x, y), LLB(x, y)] 

2.3. Architecture 

The model processes transformed image with dimensions 150 × 300 × 3, where each RGB channel has been pre-
processed with Haar wavelet functions. The proposed Residual Convolutional Network architecture is shown in Figure 
1.  

2.3.1. Initial Convolutional Layer 

The input images first pass through a Conv2D layer with 32 filters, a 3 × 3 kernel size, ReLU activation, and 'same' 
padding to maintain spatial dimensions. This is followed by a MaxPooling layer with a 2 × 2 window, reducing spatial 
dimensions by half. The convolution operation is formally defined as: 

Fout = ReLU(W * Fin + b) 
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2.3.2. Residual Block for Enhanced Feature Propagation 

After the initial convolutional layers, a Residual CNN architecture enables deeper feature extraction by introducing skip 
connections that preserve gradient flow. To match dimensions, the output of the initial convolution is passed through a 
1 × 1 Conv2D layer with 64 filters: 

shortcut = W1 × 1 * Fin + b 

The main path has two 3 × 3 Conv2D layers with 64 filters each. The first layer uses ReLU activation and 'same' padding. 
The main path convolutions are represented as: 

y i,j,k(1) = ReLU(∑  1
p=−1 ∑  1

q=−1  xi+p, j+q · w(1)p,q+ b(1) ) 

y i,j,k(2) = (∑  1
p=−1 ∑  1

q=−1 yi+p, j+q(1) . w(2)p,q + b(2) 

The shortcut and main path outputs are combined through element-wise addition, followed by ReLU activation: 

residual output = ReLU(yi,j,k(2) + shortcut) 

2.3.3. Final Classification Layers 

After applying the chosen attention mechanism, a MaxPooling layer further downsamples spatial dimensions, followed 
by a Flatten layer to prepare features for dense layers. A dense layer with 128 units and ReLU activation extracts high-
level features, and a final dense layer with sigmoid activation computes class probabilities. 

2.4. Sequential Aggregation Strategy 

Initially, the test audio recordings are sliced into fixed-length segments of 1.5 seconds. The model is then fed with mel 
spectrograms extracted from these audio segments. The trained network generates a probability score, indicating the 
likelihood of a bird's presence in each segment. A final score for an audio file is calculated by summing up all the 
segment-wise probabilities and normalizing the result.  

3. Results and discussions 

The proposed WRCNN and other existing models were implemented on the Keras-TensorFlow platform. During 
training, isolated bird vocalizations of 1.5 seconds were used, with all recordings standardized to this length for 
consistency. For testing, longer bird calls were divided into consecutive 1.5-second segments. We evaluated all models 
using a sequential aggregation strategy. These models were rigorously trained in a Google Colab notebook for up to 100 
epochs, with a batch size of 32. The adam optimizer, categorical cross-entropy loss, and a sigmoid activation function 
were used. All comparative experiments were conducted under identical operating conditions. 

Figure 3 illustrates the precision, recall, and F1-score achieved in our experiments. Figure 4 displays the confusion 
matrices for the proposed model, applied to the target dataset with two and three species. The best-performing WRCNN 
attained a macro-average precision, recall, and F1-score of 0.65, 0.62, and 0.60, respectively. In comparison, the baseline 
CNN yielded values of 0.50 for precision and recall, with an F1-score of 0.45.  
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Figure 3 Precision, Recall and F1-Score for the experiments 

 

 

Figure 4 Confusion matrix of the proposed WRCNN 

The proposed model demonstrated significant improvements in species-specific performance, particularly for the 
Mallard Duck, Red-wattled Lapwing, Eurasian Owl, and House Sparrow. While the baseline CNN achieved F1-scores 
below 50% for nearly six species, the proposed WRCNN reduced this number, showing F1-scores below 50% only for 
Blue Jay and Eurasian Owl. Overall, the WRCNN effectively minimized misclassification errors, highlighting its 
advantage over the baseline model in accurately classifying diverse bird species. 
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Table 1 Performance Comparison with Existing Methods 

No. Method Precision Recall F1-Score 

1 Grill et al. [Model 1] [13] 0.50 0.50 0.45 

2 Grill et al. [Model 2] [13] 0.51 0.48 0.48 

3 Efremova et al. [15] 0.61 0.54 0.53 

4 Yang et al. [24] 0.65 0.58 0.58 

5 Proposed WRCNN 0.65 0.62 0.60 

The performance comparison in Table 1 highlights the effectiveness of our proposed Wavelet Residual Convolutional 
Network architecture using Haar wavelet transforms, in achieving superior results over several existing models in bird 
species classification. Compared to earlier models such as Grill et al. [13] [Model 1] and [Model 2], Efremova et al. [15], 
and SENet [24] which achieve F1-scores of 0.45, 0.48, 0.58, and 0.53 respectively, our WRCNN model provides 
substantial improvements. The SENet is employed in \cite{yang} to enable the network to perform dynamic channel-
wise feature re-calibration.  The WRCNN outperforms these benchmarks with an F1-score of 0.60 indicating the utility 
of wavelet transformations in enhancing feature representation   

4. Conclusion 

Our study demonstrates the effectiveness of WRCNN in multi-label bird species classification. By applying Haar wavelet 
transforms to mel spectrograms, we introduce a multi-scale analysis to spectral features. The proposed WRCNN 
achieves a macro average F1-score of 0.60 showcasing the potential of this approach for multi-label classification tasks.  
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